腾讯宣布将两大自研项目贡献给Linux基金会; 阿里云服务大规模故障:运维操作失误 – InfoQ每周精要543期

 中文站「每周精要」
感谢您订阅每周精要第 543 期,本期内容截止于2018-07-01。
技术新闻   TECH NEWS
Java值类型的当前状态
甲骨文正在将值类型引入到Java中,我们对目前的状态进行了更新。
以太坊推出Casper的第一个版本,客户端测试开始
在Reddit最近的一篇博文中,以太坊开发者Danny Ryan宣布了Casper Friendly Finality Gadget(FFG)的第一个版本,这是以太坊的权益证明一致性算法。
基于Clang的缓存型C++编译器Zapcc开源
Zapcc是一个缓存型C++编译器,基于Clang/LLVM的一个分支创建,据称重编译的速度快50倍,完整构建的速度快2到5倍
Lazy FP状态还原漏洞公布,大多数Intel的酷睿CPU受其影响
Intel公布了新漏洞Lazy FP状态还原(CVE-2018-3665),大部分酷睿处理器受其影响。
苹果发布ResearchKit 2.0 Beta版
苹果宣布推出ResearchKit 2.0。此版本包括性能和UI改进、文档支持、社区GitHub更新以及多个新的活动任务。
Firefox重生
Firefox被Chrome“碾压”之后,借助安全和隐私保护特性涅槃重生,这次能否打场漂亮的翻身仗?纽约时报专栏作者Brian Chen对此表达了他的看法。
架构设计   ARCHITECTURE DESIGN
腾讯宣布将两大自研项目贡献给Linux基金会
腾讯的一大步,中国开源的一大步。
运满满CTO:学会享受挑战,做事儿得有要性
优秀的技术管理者,在时间管理上一定有他自己的一套方式。在采访中,王东说,如果按 10 小时(996)算肯定是“管”的工作多,全力奔跑的公司不定时遇到各种“遭遇战”。
大规模分布式环境下的企业架构治理之道
大型分布式环境下的企业架构治理是个大命题,有各种维度的管理。比如有专注于服务监控的服务调用链,有专注于主机和 OS 的系统监控平台,有专注于流量的流控平台。
运维 & DevOps   OPERATIONS & DEVOPS
阿里云服务大规模故障:运维操作失误
论运维工作的重要性。
GitLab将从微软Azure迁移到谷歌云平台GCP:我们相信Kubernetes是未来
微软收购GitHub之后,GitLab坐不住了。
图解基于HTTPS的DNS
图文并茂,向你介绍了如何通过基于HTTPS的DNS和可信递归解析器来保护用户的数据。
大前端   THE FRONT END
推荐21个顶级的Vue UI库!
为了帮助读者更快地构建下一个应用程序,以下列出了2018 年的一些最佳UI组件库。
Airbnb弃用之后,我们还应该用React Native吗?
近日,Airbnb发表了一组由 5 篇博文组成的系列文章,他们在文章中宣布停止使用React Native,并将其从代码库中移除,转而使用Swift/Objective-C/Java/Kotlin。
前端周报:Airbnb 宣布放弃使用 React Native,Vue超越了React?
前端每周清单专注大前端领域内容,帮助开发者了解一周前端热点;分为新闻热点、开发教程、工程实践、深度阅读、开源项目等栏 目。
人工智能   ARTIFICIAL INTELLIGENCE
这是我看过解释TensorFlow最透彻的文章!
TF怎么学?谷歌工程师为你指点迷津!
重磅!微软内部研究数据集正式对外开放,覆盖NLP、CV等9个领域
分类多、覆盖范围广,资源珍贵,且用且珍惜。
AI前线一周热闻:英特尔CEO因婚外情辞职; 华为与美国高校合作遭调查; 百度设计混搭神经架构搜索RENA
一周热闻准时报到!
区块链   BLOCKCHAIN
阿里云都能挂了,可颠覆硅谷的EOS,64%算力还挂在巨头中心化的云计算上
近日Reddit网友爆料,在排名前47位的EOS区块生产者当中,有16位使用亚马逊的AWS云服务,9位使用Google Cloud,另外3家则使用阿里巴巴的云服务。
2018年的区块链就像2009年的NoSQL!
如果有人问你“什么是NoSQL”,相信你很难回答这个问题。你可能会说,NoSQL是“一个不使用SQL的数据库”,但对于不同的人来说,这句话的含义是不一样的。如果有人问你“什么是区块链”,也是一样的道理。
干掉区块链的量子计算要来了,密码学应该如何升级?
从技术上讲,区块链十分依赖密码学和相关安全技术的研究成果。有人说区块链的兴起是密码学发展的一次小高潮;现代密码学之父 Whitfield Diffie 则认为,区块链技术让密码技术出现“复苏”。
技术大会   CONFERENCE
ArchSummit:顶尖架构师怎么解决你遇到的问题?
他们来自Google、Facebook、Netflix、AWS、腾讯、阿里、百度等知名企业,从人工智能到金融技术,从精准推荐到复杂空间数据存储,从数据库实践到AIOps,下周五ArchSummit全球架构师峰会深圳站,100+国内外架构师提供技术方案及思考,助你突破技术瓶颈。
BCCon:如何基于区块链服务构建企业区块链业务系统?
阿里云区块链团队在构建企业级区块链业务系统方面有很多实践经验,包括:如何构建区块链产品能力体系?企业采纳和落地区块链时需要考虑哪些问题?如何满足安全合规需求?如何进行区块链应用开发?区块链系统和数据上云迁移、数据管理和运维等……
QCon:基于NEO区块链的专家网络应用实践
早期接触区块链的时候,觉得它是无所不能的,甚至会在互联网领域掀起狂风暴雨;随着国内ICO禁令之后,无所不能变成了万万不能。如何利用区块链技术和自身业务融合,发掘应用场景,寻找区块链落地方案成了急需解决的问题。
极客时间App   GEEK TIME APP
极客时间企业账户上线啦!上线啦!上线啦!
企业团队的研发团队成员技术水平分布不均,如何能通过一种方式帮助企业,可以让企业根据团队需求,自主选择技术人员学习的产品呢?极客时间企业账户,一种全新的团队学习方式!
《深入浅出区块链》你的区块链入门第一课
国内区块链项目Metaverse元界CTO陈浩,带你少做弯路地入门区块链,通过通俗易懂的语言从0开始,教你掌握区块链的基础知识,构建区块链体系架构,梳理区块链学习路径。想享受区块链红利,实现技术自由与财务自由么?快来学习吧!
技术人如何快速提高测试能力?
多技术人都忽视了,其实测试很重要。现在国外等大公司,比如Google流行“开发自己测试”,这是未来的趋势,每一个技术人都多少学点测试技术,推荐看这个《软件测试52讲》,覆盖了从测试基础到GUI、API、性能测试再到测试架构等等测试必备知识要点!
活动推荐   POPULAR EVENTS
划重点!这个你并不了解的“蚂蚁金服”
K8S、Service Mesh…这是新技术破茧成蝶的盛会,也是科技与金融的融会贯通。7月6日,蚂蚁金服围炉夜话带你探寻不为人知的金融级云原生架构。
百万奖金大赛花落谁家,由你决定
经过新一轮的筛选,迅雷全球区块链应用开发大赛十强名单正式决出。来自中美两国的十只队伍成功晋级,闯进了最终决赛。7月6日深圳,参与决赛现场投票打分,决定冠军归属。
以AI之名,Google Cloud坚守云计算初心
想知道Google Cloud如何四两拨千斤地应付机器学习、构建TensorFlow预测模型等问题吗?7月6日ArchSummit深圳,看坚守初心Google Cloud拥抱中国之后的那些事。
打通架构师“任督二脉”,就差这几本秘籍
都说好的架构师可遇不可求,如果你想成为年薪百万架构师,7月6日三场解决方案专场分享会,为打通“任督二脉”传授功力!
InfoQ中文站每周日针对会员发送每周内容精要邮件,
别人转发给你的邮件?现在注册获取您自己的 InfoQ每周精要邮件吧
InfoQ微博:@InfoQ
InfoQ微信:infoqchina
InfoQ手机客户端:极客时间

The Software Architects’ Newsletter June 2018

InfoQ

The Software Architects’ Newsletter
June 2018
View in browser

In our eleventh issue of the Architects’ Newsletter we are continuing to explore the emerging field of chaos engineering and what it can teach us about building resilient distributed systems.

News

Chaos Engineering: Why the World Needs More Resilient Systems

The video is now available for the QCon London talk “Chaos Engineering: Why the World Needs More Resilient Systems” by Tammy Butow, Principal SRE at Gremlin, which explains why the world needs more resilient systems and how this can be achieved with the practice of chaos engineering. The talk suggests that three primary prerequisites for chaos engineering must be implemented before additional work can begin. Specifically: high severity “SEV” incident management; effective monitoring; and the ability to measure the impact of a failure (both in technical and business terms). Butow also presents a series of guidelines, tools and principles for creating a chaos testing practice.

Additionally, Butow recently wrote an informative guide on “Getting Started with Chaos Engineering” and took part in a Software Engineering Radio podcast that discussed the factors that caused Chaos Engineering to emerge, the different types of chaos that can be introduced to a system, and how to structure experiments. Her colleague, Ana Medina, a chaos engineer at Gremlin, has also presented a similar talk about getting started with chaos engineering at SREcon Australia, for which the slides are available.

Five mistakes that Teams New to Chaos Engineering Make

An informative blog post by Tyler Lund, Director of Software Development at Audible, discusses how the teams who excel with chaos engineering use frequent, small experiments to find issues that affect the user experience, “rather than waiting for all users to experience a problem”. The five mistakes he often sees new chaos engineering teams make include: not monitoring enough; breaking things just to break them; lacking a proper shutoff switch; never running in production; and replacing other kinds of tests with chaos tests. A constant theme of the discussion is that chaos engineering must focus primarily on the user experience of the system under test:

“Software development teams tend to get excited about chaos engineering and go all in a bit too quickly without really thinking about how to best use it to improve the experience for their users”.

Lund concludes by stating that effective teams “use Chaos Engineering to find Chaos, not to cause it.”

Purple Testing and Chaos Engineering in Security Experimentation

On opensource.com Aaron Rinehart and Andrew Weidenhamer have presented how red and “purple” team testing and chaos engineering complement each other to form a strong security experimentation strategy. The post begins by stating that testing “seeks to assess and validate the presence of previously known system attributes”, whereas, in comparison, experimentation “seeks to derive new information about a system by utilizing the scientific method”. Both approaches are important in order to create and maintain secure systems.

An exploration of security experimentation, and how this came about through the application of chaos engineering is presented, and the challenges of traditional security approaches of red team vs blue team are discussed. The concept of purple team exercises was discussed, which attempts to create a more cohesive testing experience between offensive and defensive security techniques by increasing transparency, education, and better feedback loops:

“By integrating the defensive tactics and controls from the blue team with the threats and vulnerabilities found by the red team into a single narrative, the goal is to maximize the efforts of each”.

Continuous Chaos: Never Stop Iterating

Philip Gebhardt, software engineer at Gremlin, discussed how the approach to chaos engineering is similar to software testing patterns. “You wouldn’t write software without an iterative testing cycle”, he says, so why would you “design production systems without one?” The majority of the post explores a challenging DNS issue that the Gremlin team found within their production systems, and explains how an iterative approach to designing and running a series of chaos experiments helped to mitigate against that issue in the future.

 

Case Study

Chaos Engineering at LinkedIn: The “LinkedOut” Failure Injection Testing Framework

The LinkedIn Engineering team have recently discussed their “LinkedOut” failure injection testing framework in more detail. Hypotheses about service resilience can be formulated and failure triggers injected via the LinkedIn LiX A/B testing framework or via data in a cookie that is passed through the call stack via an Invocation Context (IC) framework. Failure scenarios include errors, delays and timeouts. The LinkedOut project is part of the larger “Waterbear” initiative to encourage every team at LinkedIn to contribute to resilience engineering efforts.

Logan Rosen, senior engineer, Site Reliability at LinkedIn, recently wrote “LinkedOut: A Request-Level Failure Injection Framework” on the LinkedIn Engineering blog. The post began by stating that in a complex, distributed technology stack, it is important to understand the points where things can go wrong and also to know how these failures might manifest themselves to end users. Engineers should assume that “Anything that can go wrong, will go wrong.”

There are many ways to inject failures into a distributed system, but the most fine-grained way to do it is at the request level. The Netflix chaos/resilience engineering team have previously discussed how they created the Failure Injection Testing (FIT) framework that eventually evolved into the Chaos Automation Platform (ChAP), which injected failure in just this way. Similarly the LinkedIn Site Reliability Engineering (SRE) team established the Waterbear project in late 2017, which is an effort to help developers “hit resiliency problems head-on” by both replicating system failures and adjusting frameworks to handle failures gracefully and transparently. Out of this work emerged the LinkedOut failure injection testing framework which enables request-level failure injection.

At its core, LinkedOut is a “disrupter” request filter in the organisation’s Rest.li stack, a Java framework that allows developers to easily create clients and servers that use a REST-style of communication. The open-source portion of this work can be found in the r2-disruptor and restli-disruptor modules within the project’s GitHub repository. LinkedOut is currently able to create three types of failures: error — the Rest.li framework has several default exceptions thrown when there are communication or data issues with the requested resource; delay — engineers can specify an amount of latency before the filter will pass the request downstream; and timeout — the filter waits for the timeout period specified.

At development time, engineers use the LinkedOut framework to validate that their code is robust. This validation is extended to production scenarios to provide external parties the confidence and evidence of robustness. There are two primary mechanisms to invoke the disruptor while limiting impact to the end-user experience. One of these is LiX, the LinkedIn framework for A/B testing and feature gating. The second is the Invocation Context (IC), a LinkedIn-specific, internal component of the Rest.li framework that allows keys and values to be passed into requests and propagated to all of the services involved in handling them.

As the service call graph is large and complicated at LinkedIn — the latest home page depends on more than 550 different endpoints — it is very difficult for engineers to ensure expected “graceful” degradation on the home page for every failure scenario. Therefore the SRE team created a service account (not associated with a real member) and gave it access to all of the LinkedIn products.

To automatically test web pages, the team leverages an internal framework that allows for Selenium testing at scale. They send commands to inject the disruption information into the invocation context (IC) via a cookie (which only functions on their internal network), authenticates the user, and then loads the URL defined in the test. The team considered several ways to determine success after injecting failures, but for the first iteration of the framework they decided to simply provide default matchers for “oops” (error) pages and blank pages. If the page loaded by Selenium matched one of these default patterns, they would consider the page to not have gracefully degraded.

At LinkedIn the mechanism of triggering failures via feature targeting (flagging) is simple due to the maturity and power of the LiX experimentation framework. Engineers create a targeting experiment based on the failure parameters that they specify. Once the experiment is activated, the disruption filter picks up the change, via a LiX client, and fails the corresponding requests. Using LiX also allows an engineer to easily terminate failure plans (“within minutes”) that have gone wrong or are impacting end-users inappropriately.

Additional details on the LinkedOut framework, including additional references and a discussion of the importance of the human and cultural side of resilience testing, can be found within the recent “Chaos Engineering at LinkedIn: The ‘LinkedOut’ Failure Injection Testing Framework” article on InfoQ.

To get notifications when InfoQ publishes content on this topic follow Chaos Engineering on InfoQ.

Missed a newsletter? You can find all of the previous issues on InfoQ.

This edition of The Software Architects’ Newsletter is brought to you by:

NGINX

Load Balancing in the Cloud

Cloud load balancing refers to distributing load across a number of application servers or containers running on cloud infrastructure. Cloud providers offer Infrastructure as a Service (IaaS), which renders virtual machines and network provisioning through use of an application programming interface (API). In the cloud it’s easy and natural to scale horizontally as new application servers are just an API call away. With dynamic environments, where new machines are provisioned and decommissioned to meet user demand, there is a greater need for a load balancer to intelligently distribute traffic across your machines.

 

InfoQ strives to facilitate the spread of knowledge and innovation within this space, and in this newsletter we aim to curate and summarise key learnings from news items, articles and presentations created by industry peers, both on InfoQ and across the web. We aim to keep readers informed and educated about emerging trends, peer-validated early adoption of technologies, and architectural best practices, and are always keen to receive feedback from our readers. We hope you find it useful, but if not you can unsubscribe using the link below.

Unsubscribe

Forwarded email? Subscribe and get your own copy.

Subscribe

爱可可老师24小时热门分享(2018.6.28)

Deep Learning Weekly – Issue #88: OpenAI Five, Twitter Workflows, Speech Synthesis, Inverse RL, DensePose, Confusing TensorFlow and more…

 

Hey and welcome to another week in deep learning! This week, we obviously start off with OpenAIs move
 
June 27 · Issue #88 · View online
Deep Learning Weekly

Hey and welcome to another week in deep learning!
This week, we obviously start off with OpenAIs move into Dota 2 gaming, look at ML Workflows at Twitter, learn about reduced GPU pricing on GCP and explore speech synthesis services as well as depth inference for photo editing. We learn about inverse reinforcement learning, object detection, and photo caption. Afterward, we get a great TensorFlow concepts explanation from a Google Brain resident, get to know Facebooks DensePose, a new portal linking papers and code, and the best paper of CVPR2018.
As always, we hope you’ll enjoy reading as much as we did and would appreciate you sharing this newsletter with friends and colleagues. 
You may have noticed, that we’re currently running on a bi-weekly schedule due to various reasons, but hope to bring the newsletter back to the normal pace soon. To make up for the delays, we just added a few more links to this weeks issue.
Happy reading and hacking!


Industry
OpenAI Five

Productionizing ML with Workflows at Twitter

Introducing improved pricing for Preemptible GPUs

Speech Synthesis as a Service

From 2D to 3D Photo Editing

Learning
Learning from humans: what is inverse reinforcement learning?

Understanding Deep Learning for Object Detection

How to Develop a Deep Learning Photo Caption Generator from Scratch

Libraries & Code
Tensorflow: The Confusing Parts

Introducing Apex: PyTorch Extension with Tools to Realize the Power of Tensor Cores

Facebook open sources DensePose

NLP-progress: Repository to track the progress in Natural Language Processing (NLP)

Papers & Publications
Papers with Code: The latest in machine learning

Taskonomy: Disentangling Task Transfer Learning

On Calibration of Modern Neural Networks

Did you enjoy this issue?
If you don’t want these updates anymore, please unsubscribe here
If you were forwarded this newsletter and you like it, you can subscribe here
Powered by Revue
 

 

永远不要在MySQL中使用“utf8”编码; FB正在大规模重构React Native,预计今年发布 – InfoQ每周精要542期

 中文站「每周精要」
感谢您订阅每周精要第 542 期,本期内容截止于2018-06-24。
技术新闻   TECH NEWS
GDPR给网站用户跟踪带来重大影响
随着网站开始遵守数据隐私条例,开发人员很快就发现网站页面加载性能得到显著改进。
谷歌发布Android P Beta 2
谷歌发布了Android P Beta 2,包含最终的Android P API(API Level 28)、最新的系统镜像、显示剪切支持等。
.NET Framework 4.8预览
.NET 4.8的“早期访问”预览版表明了微软最关心的领域包括高DIP、可访问性和并发性。
专访肖雨浓:Netflix公司是怎样探索落地FAAS的?
肖雨浓来分享Netflix的对FAAS技术的探索过程,希望能给技术工作者带来收获。
AWS发布Elastic Container Service for Kubernetes(EKS)
Elastic Container Service for Kubernetes(EKS)正式发布。它加入了托管Kubernetes云服务的激烈竞争,每种服务提供不同的功能和部署地区。
Facebook Sonar:一款可视化及交互式移动应用调试工具
Facebook Sonar是一个开源工具集,旨在帮助开发人员以交互式和可扩展的方式检查和理解iOS及Android应用程序的结构和行为。
架构设计   ARCHITECTURE DESIGN
记住,永远不要在MySQL中使用“utf8”编码
我要在这里澄清一下:所有在使用“utf8”的 MySQL 和 MariaDB 用户都应该改用“utf8mb4”,永远都不要再使用“utf8”。
京东构建了全球最大的Kubernetes集群,没有之一
2018 年的 618,鲍永成和他的同事们写下了这篇文章,他们希望能够系统梳理过去几年京东在基础架构方面的点击探索,也希望这系列文章能够帮助到更多的中小公司少走弯路。
一个支付服务的最终一致性实践案例(含伪代码)
功夫贷的支付服务,是怎么实现最终一致性的。
运维 & DevOps   OPERATIONS & DEVOPS
CI\CD:DevOps背后的推动力
DevOps 的最终目标是能够更频繁地发布高质量的软件,并通过促进沟通和协作来实现这一目标。
Docker Hub中删除17个包含后门的恶意Docker镜像
近日,Docker 团队删除了 Docker Hub 上 17 个包含后门的恶意 Docker 容器镜像,检查一下你是否使用过这些镜像。
AIOps实践思考:AIOps如何与APM结合?
APM 系统不仅向AIOps实践过程中提供足够丰富的数据以让 AIOps 平台更快适应企业的应用场景、为AIOps的实践过程提供了采集、处理和存储的关键技术基础,并可以为AIOps 的实践效果验证和评价。
大前端   THE FRONT END
FB正在大规模重构React Native,预计今年发布
几日前,Facebook刚刚发布了React Native 0.56,随后,React工程经理Sophie Alpert在其官方博客上宣布他们将要重构React Native,使其更轻量,更适应JavaScript生态圈的发展。
深入了解JavaScript引擎精华
本文来自Google引擎V8工程师Mathias和Benedikt 在JSConf EU 2018上的演讲。他们对所有JavaScript引擎中常见的一些关键基础内容进行了介绍。
重磅!Google发布Flutter Release Preview 1
在北京GMTC大前端大会上,Google Flutter高级工程师于潇宣布Flutter Release Preview 1发布,并宣布与阿里巴巴闲鱼团队在Flutter上合作,这标志着Flutter进入了一个新阶段。
人工智能   ARTIFICIAL INTELLIGENCE
5月Github上最热门的数据科学和机器学习项目TOP5
最不能错过的机器学习项目。
谷歌5.5亿美元投资京东,无人配送开进小区!
京东无人车开进小区,还喜提谷歌投资。
AI一周热闻:寒武纪完成B轮融资;美恢复中兴制裁令;FAIR开源DensePose
AI一周最热新闻全网罗。
区块链   BLOCKCHAIN
曾融资1200万美元的现象级产品谜恋猫,正宣告死亡
还没有杀手级的应用,区块链技术就始终处于“寒冬”之中。
天价薪水难求一人才!想进区块链行业?这两点你必须了解
今天分享元界CTO陈浩先生在极客时间专栏《深入浅出区块链》一篇文章。他从行业的角度来讲讲区块链行业现状以及人才需求,再从人才角度,和我们来谈谈从业区块链需要具备哪些基础技能。
未来世界的运转方式?智能合约的真相
在这篇文章里,我准备检查一下智能合约,看看它到底是什么,以及在工程上随之而来的事实(提示:它没那么简单,并且很难保证其安全性)。
技术大会   CONFERENCE
ArchSummit:新零售技术选型怎么做?
“新零售”一词从2016年提出以来,这个行业就机遇和挑战并行,线上线下进行融合,数据驱动,AI应用将成为这次变革的引擎。线上电商和线下传统零售商有哪些探索和案例?已经取得成功的公司又有怎样的产品架构规划?
BCCon:华为云区块链服务技术决策和落地实践
企业在落地区块链应用时都会面临这几个问题:为什么要用区块链,选择什么样的区块链技术,应用区块链的过程有哪些难点,区块链技术能用在哪些场景。听听华为云区块链服务产品负责人刘再耀怎么说。
QCon:如何快速打造高稳定千亿级别对象存储平台
短视频APP的痛点,在于每天都有海量的视频数据上传存储,到目前为止所有的视频以及衍生数据总量更是数量庞大。快手大数据架构团队有一种可以快速构建海量短视频存储的服务的方案,解决高可用、高扩展性、高性能等问题。
极客时间App   GEEK TIME APP
【限时特惠】React 从入门到精通的实战指南
eBay资深技术专家王沛,由浅入深介绍 React 设计模式和常用技术栈,理解 React 创建高性能的用户交互界面的原理,掌握使用 React 开发大型项目的能力,提升职场竞争力。
99%面试官都会问到的Java面试题,现深度解析给你看!
Oracle首席工程师带你深度解析Java经典面试题,搞定BAT面试!专栏重点围绕“术”与“道”,为你讲解 Java面试的核心知识点。就算你暂时不需要准备面试,照样可以通过这个专栏,提升 Java技能。点击订阅,立减6元。
想进天价薪水的区块链行业?来看入门区块链第一课!
36节课,5大模块,用通俗易懂的语言带你掌握区块链入门必备基础知识点,剖析与详解区块链核心技术,解析区块链实战应用场景案例,构建属于你的迷你区块链项目。
活动推荐   POPULAR EVENTS
京东、华为、阿里容器技术大揭秘!最后一周免费报名
6月28日北京Rancher Container Day 2018,聚焦容器技术落地经验,分享顶级容器应用案例,与众多一线代码贡献者一起拥抱时代未来。
区块链的应用落地都有哪些?
07月06日,迅雷全球区块链应用大赛总决赛迎来收官时刻。这是一场区块链技术开发者的狂欢盛宴,技术干货、百万奖金、大咖评委,都将为你一一呈现!谁将带来最优作品,谁能带走百万大奖?让我们一起见证最优区块链应用项目的诞生!
ArchSummit培训:企业实施微服务究竟会遇多少坑?
近一段时间,微服务被推崇备至,不少人都想要通过他来解决庞大而老旧的数据库遇项目,但究竟一个微服务架构该如何搭建呢?微服务搭建需要哪些先决条件呢?在实施的过程中又会遇到哪些坑呢?余额宝首席架构师李鑫老师想跟你聊一聊。
活动抢票!容器+Kubernetes:云计算打怪升级新技能
K8S话题持续发酵,基于容器+Kubernetes的新型PaaS为何将成为云计算主流?6月30日,容器、K8S大咖将带着云计算部署通关秘籍在腾讯大本营等着你。
InfoQ中文站每周日针对会员发送每周内容精要邮件,
别人转发给你的邮件?现在注册获取您自己的 InfoQ每周精要邮件吧
区块链前哨:掌握最前沿区块链资讯,深度分析区块链技术。从新手到精通,你只需要这一个专业助手。
区块链前哨微博:@区块链前哨
区块链前哨微信:blockchain-666

爱可可老师24小时热门分享(2018.6.21)

爱可可老师24小时热门分享(2018.6.20)

 

少年Pi的奇幻漂流中文电子书下载

下载地址:https://asytech.cn/cloud/index.php/s/Gd578daEEMqRmRF

节选:

“这一招真管用!”拉维说,同时一只手在头顶上飞快地绕着圈。“他把水咳了出来,开始呼吸空气,但这把他所有的肌肉和血 液都挤压到了上半身。所以他的胸脯才这么厚实,而他的腿却那么细。”

我信了他。(拉维取笑起人来毫不留情。他第一次当着我的面叫玛玛吉“鱼先生”的时候,我在他床上放了一根香蕉皮。)甚至 到了六十几岁,玛玛吉的背已经有些驼了,一辈子不断起作用的反科学的重力已经开始将他的肌肉往下拉,这时他仍然每天早 晨在奥罗宾多静修处的游泳池游十五个来回。

他试图教我父母游泳,但他们最多只能在沙滩上走进齐膝深的水里,用胳膊可笑地划着圆圈。如果他们在练习蛙泳,那动作就 会让他们看上去好像在走过一片丛林,边走边分开前面高高的草;如果他们在练习自由泳,那动作就会让他们看上去好像正跑 下一座山坡,边跑边挥动着手臂,以防止跌倒。拉维对游泳同样没什么热情。

玛玛吉不得不等到我来到这个家里,好找到一个愿意追随他的人。在我达到游泳年龄的那一天——让妈妈感到苦恼的是,玛玛 吉说能够游泳的年龄是7岁——他带我到海滩去,面对大海伸开双臂,说:“这是我送给你的礼物。”

Apache2反向代理设置

在写Flask或者django的时候需要设置apache2的反向代理,当然如果使用nginx就简单了,这里给出Apache2的最小化设置

sudo a2enmod proxy
sudo a2enmod proxy_http

<VirtualHost *:80>
    ProxyPreserveHost On

    ProxyPass / http://127.0.0.1:8080/
    ProxyPassReverse / http://127.0.0.1:8080/
</VirtualHost>

千万记得写“HTTP://”,也是出现“No protocol handler was valid for the URL /. If you are using a DSO version of mod_proxy, make sure the proxy submodules are included in the configuration using LoadModule.” 的解决方案,问题很难排查,大坑。

爱可可老师24小时热门分享(2018.6.13)